A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper.
نویسندگان
چکیده
Ripe pepper (Capsicum sp.) fruits can display a range of colours from white to deep red. To understand better the regulatory mechanisms of the carotenoid biosynthetic pathways that underlie these ripening colours, Capsicum varieties that show seven different fully ripe colour types were analysed. The levels and composition of the carotenoid accumulation in these samples at different stages of ripening were measured, and the resulting data were analysed in conjunction with the expression patterns of the carotenoid biosynthetic genes. It was found that red peppers accumulate increasing levels of total carotenoids during ripening, whereas non-red peppers accumulate lower levels of total carotenoids of varying composition. The expression levels of the phytoene synthase, phytoene desaturase, and capsanthin-capsorubin synthase (Ccs) genes are high in peppers with high levels of total carotenoid, whereas one or two of these genes are not expressed in peppers with lower levels of total carotenoid. Surprisingly, it was found that the Ccs gene is present in two Capsicum varieties whose ripe colour is yellow. This gene has never previously been shown to be present in yellow peppers. Sequence analyses of the Ccs gene further revealed two structural mutations in yellow peppers that may result in either a premature stop-codon or a frame-shift. Taken together with the fact that the Ccs transcript is not detectable in yellow peppers, our current results suggest that nonsense-mediated transcriptional gene silencing of Ccs and not the deletion of this gene is responsible for yellow ripening in Capsicum.
منابع مشابه
Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.)
Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits' yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from...
متن کاملCarotenoid biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding.
Changes in the biosynthesis of individual carotenoid pigments have been investigated during fruit ripening of five cultivars of red pepper (Capsicum annuum L.): Mana, Numex, Belrubi, Delfin, and Negral (a chlorophyll-retaining mutant when ripe). The study was carried out throughout the ripening process, and with special emphasis on the ripe stage, to discover possible differences between cultiv...
متن کاملA Further Analysis of the Relationship between Yellow Ripe-Fruit Color and the Capsanthin-Capsorubin Synthase Gene in Pepper (Capsicum sp.) Indicated a New Mutant Variant in C. annuum and a Tandem Repeat Structure in Promoter Region
Mature pepper (Capsicum sp.) fruits come in a variety of colors, including red, orange, yellow, brown, and white. To better understand the genetic and regulatory relationships between the yellow fruit phenotype and the capsanthin-capsorubin synthase gene (Ccs), we examined 156 Capsicum varieties, most of which were collected from Northwest Chinese landraces. A new ccs variant was identified in ...
متن کاملCharacterization of plant carotenoid cyclases as members of the flavoprotein family functioning with no net redox change.
The later steps of carotenoid biosynthesis involve the formation of cyclic carotenoids. The reaction is catalyzed by lycopene beta-cyclase (LCY-B), which converts lycopene into beta-carotene, and by capsanthin-capsorubin synthase (CCS), which is mainly dedicated to the synthesis of kappa-cyclic carotenoids (capsanthin and capsorubin) but also has LCY-B activity. Although the peptide sequences o...
متن کاملXanthophyll esterification accompanying carotenoid overaccumulation in chromoplast of Capsicum annuum ripening fruits is a constitutive process and useful for ripeness index.
Changes in xanthophyll esterification degree during pepper fruit ripening have been studied in five cultivars (Numex, Mana, Belrubi, Delfin, and Negral). Esterification of xanthophylls with fatty acids is seen to be a process that is contemporary with and directly linked to the transformation of chloroplast (present in the green fruit) into chromoplast (present in the red fruit). Changes in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 58 12 شماره
صفحات -
تاریخ انتشار 2007